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a  b  s  t  r  a  c  t

Classical  turnpike  theory,  as  originally  conceived  by  Samuelson,  pertains  to optimal  growth
theory  over  a large  but  finite  time  horizon  with  given  initial  and  terminal  stocks.  In this
paper,  we  present  two  turnpike  results  in the  context  of the  economics  of  forestry  with
given initial  and  terminal  forest  configurations.  Our  results  depart  from  the general  theory
in that they  concern  a transitional  production  set  which  does  not  satisfy  the  assumptions
of  inaction  and  free  disposal,  and  rely  on a recently  discovered  non-interiority  assumption
on  concave  (not  necessarily  differentiable)  benefit  functions  that  implies,  and  is  implied  by,
the asymptotic  convergence  of  good  programs.

© 2011 Elsevier B.V. All rights reserved.

The [turnpike] results while simple and concise could probably not be predicted in advance. (Gale 1970)

1. Introduction

The results presented in this paper can perhaps be best introduced by asking what is “classical turnpike theory”? and
what has it to do with the “economics of forestry”? We  begin with the first question.
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The origin of the subject is easily dated to Paul Samuelson’s (1949) Rand Memorandum, and its essential motivation is
to show that the solutions of an intertemporal allocation problem over a large but finite time horizon, with given initial
and terminal stocks, stay approximately close, most of the time, to maximally sustainable programs free from any con-
siderations pertaining to a terminal horizon. However, despite the commitment in Ramsey (1928), it is only by 1965 that
an infinite-horizon variational problem is accepted as a legitimate vehicle to address issues of intertemporal allocation. In
an undiscounted setting, Gale (1967) focussed on the problem of the existence of an optimal program, and resolved it by
conditions ensuring the asymptotic convergence of good programs, a methodological procedure that he referred to as a
“round-about method.”1 Even though this asymptotic property of good programs is mentioned in passing as a “turn-pike”
theorem, Gale reverted to the classical conception in his 1970 expository paper. Along with monotonicity properties, he
situates classical turnpike theory within the broader rubric of qualitative properties of optimal programs.2 In this paper,
we revert to the Samuelsonian classical conception pertaining to large but finite optimal programs, and investigate what
McKenzie (1976) was subsequently to term the middle turnpike.3

The resurgence of interest in the economics of forestry can also be dated to Samuelson (1976a) and to his sighting of
Faustman’s (1849) analysis. However, it remained for the remarkable articles of Mitra and Wan  (1985, 1986),  and following
them, Salo and Tahvonen (2002, 2003),  to take his market analysis and recast it into an optimal Ramseyian planning, frame-
work. Once this link is forged, and the conceptual markers of the theory of intertemporal resource allocation are identified in
the forestry model – the golden-rule stocks, the golden-rule prices and corresponding maximal sustainable timber yields as
Ramsey’s bliss point – we are naturally lead to ask whether forest management programs for large but finite time horizons
follow a turnpike. To go to the epigraph from Gale, there appears to be no reason why  they should, and this scepticism leads
directly into our second question concerning the relevance of classical turnpike theory to the Mitra–Wan (MW)  forestry
model. Here the usual justifications of turnpike theory as resolving qualitative puzzles and computational difficulties take
on an added force, and turnpike theory attains a normative significance perhaps even greater than that in capital theory in the
abstract and in the large. And to be sure, the resulting theory includes, as a special case, the situation of a profit-maximizing
forest manager, with the infinite horizon as the formalization of the fact that there is no specified time-period for the end
of his or her firm, with such an application involving a demand function for timber being very much facilitated under the
weakened assumptions on benefit (felicity) functions that we  pursue in this paper.4

Unlike the aggregative Ramsey–Cass–Koopmans optimal growth model of modern macroeconomics, the issue in the
economics of forestry is the lack of knowledge of the optimal policy correspondence and of transition dynamics. What should
the planner, or the forest manager, do today in terms of optimal policy over a fixed time-horizon rather than take satisfaction
that any arbitrary initial configuration converges to the maximally sustainable forest configuration in the very long run? In
any case, at least since Faustman, periodicity seems to be the rule, and the charting of an optimal policy correspondence
with a non-linear benefit (felicity) function remains, even until now, totally uncharted.5 And so the question arises whether
staying with the maximally sustainable configuration is “good enough,” and thereby leads only to an increased reliance on
turnpike results.6 Furthermore, a forest, unlike a given stock of capital, is much more than a durable input for the production
of desired commodities – it is desirable in itself, and if not a “way of life” of so-called endogenous and native communities, a
stock imbricated by externality considerations and entrusted by one generation to another.7 As such, a forest configuration
also enters as an argument in the benefit (felicity) function, and thereby further complicates the difficulties of determining
what the planner has to do “tomorrow and the day after” rather than the long-run. But more to the point, such results
allay fears and furnish a reassurance that a planner’s departure from an initial forest configuration to one yielding maximal
sustained timber yields, even when he has to return to future generations the forest in the same state that he was given it,
is not betraying this trust. However such a theory can only be constructed on the shoulders of a theory for the simpler case
considered here when the felicities depend only on timber yields.8

With the relevance of turnpike theory to the economics of forestry established and out of the way, one can turn to the
more immediately antecedent literature and delineate the precise contribution of this paper. Given the extensive work on
turnpike theory associated with the names of Samuelson, McKenzie, Gale and their followers, why can one not simply appeal

1 Gale (1967, p.1) writes, “It may  well be that there is a more direct way of obtaining our existence theorem, but even if this should turn out to be true,
the  present round-about approach would not be an entirely wasted effort.” The continuing relevance of this “round-about” method is noted, and utilized,
in  Khan and Zaslavski (2010a,b).

2 See paragraph 3 and Section 5 in Gale (1970). (The reader is warned that there are two Sections 4 in the paper.)
3 For an argument that seeks to distinguish the classical conception from the broader one of McKenzie that emphasizes both the early and late turnpike,

see  Khan and Zaslavski (2010a). McKenzie’s followers now refer to asymptotic convergence of the late turnpike exclusively as the turnpike theory.
4 Such an application was already noted in Mitra and Wan  (1986).  For a detailed consideration of alternative objectives of the forest manager, the reader

is  referred to Samuelson (1976a) and Rosser (2005).
5 Salo and Tahvonen (2002) and Mitra (2006) are notable exceptions for the strictly concave case, but even they confine themselves to a dual-aged forest

and  require additional assumptions. For a result on a periodic turnpike, see Samuelson (1976b).
6 Also see the last paragraph of Gale’s (1967) introduction. Its somewhat “paradoxical” defense of infinite-horizon problems as pertaining to the very

immediate future – the “guidance of a ship on a long journey” – is premised on precisely the ability to compute this policy correspondence.
7 For externality considerations in the economics of forestry, see Samuelson (1976a); and for the larger implications reaching into political theory, see

Kant  and Berry (2005),  and perhaps also the discussion of the references in Khan (2005). In a non-Ramseyian framework, the complications arising from
externalities are discussed in Rosser (2005).

8 For the complications arising from the case of wealth-dependent felicities, see Majumdar and Mitra (1994).
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to the standard results? What is the need for additional modifications? In particular, why  are the results presented in this
paper not straightforward applications of the recent extension of the theory sketched in Khan and Zaslavski (2010a)? The
answers to these questions require a technically more focussed discussion. We  turn to this.

Even though the Robinson–Solow–Srinivasan (RSS) model and the MW model are different models with entirely different
interpretive registers, the subtle analytical connections between them are undeniable, and the recent RSS revisitation of
turnpike theory in Khan and Zaslavski (2010b) worth noting. It involves at least four disparate elements: (i) the irrelevance,
in principle, of necessary first order Euler–Lagrange conditions, and indeed of differentiability of the felicity function at the
golden-rule stock, (ii) the identification of asymptotic convergence of good programs as a sufficient condition for classical
turnpike theory, and therefore for the asymptotic convergence of optimal programs, (iii) the derivation of asymptotic stability
of optimal programs from the classical turnpike result, which is to say, the derivation of results on the early and late turnpikes
as a consequence of a result on the middle turnpike, (iv) a focus on approximately optimal large but finite programs. Only
points (i) and (ii) need further supplementation in the context of results that we  report here, and we take them in turn. As
regards (i), it is now well-understood that the golden-rule stock in the RSS model, is not in the interior of the transition
set, and even for the case with a single type of machine when it is in the interior, the reduced form utility function is not
differentiable at it even with a linear felicity function. In part, this is precisely what gives the RSS model its continuing
interest. The same occurs in the MW model. As regards (ii), it allows us to move away from the dichotomy of linear and
strictly concave felicity functions to a more productive sufficiency condition, something essential for the RSS model where
even strictly concave felicity functions do not lead to strictly concave reduced-form utility functions as is required by the
theory. In particular, such a condition allows a turnpike theorem when the felicity function is linear and the marginal rate
of transformation �� /= 1. It is this issue that finds its most satisfactory culmination in the MW model.

In recent work, Khan and Piazza (2009) furnish for the MW forestry model a non-interiority condition that is necessary
and sufficient for asymptotic convergence of good programs when the benefit (felicity) function is assumed only to be
concave and not necessarily differentiable.9 And so the natural question arises as to whether one can construct a robust
turnpike theory of the classical type for the economics of forestry, as is done in Khan and Zaslavski (2010a) for the (RSS)
choice of technique problem in development planning. Theorems A and B presented in Section 3 below answer this question
in the affirmative, and constitute the principal results of this work. They also yield as direct corollaries results on the
asymptotic convergence of optimal programs (Theorem 2.4), and results on the “bunching” or “approximate bunching” of
optimal forest configurations. Unlike the RSS model, there is no natural ordering on the transition production set in the
MW model, and this necessitates novel and different arguments, and as it happens, more constructive ones than those
presented in Khan and Zaslavski (2010a). Sections 4 and 5 present the statements of several results that are both needed in
the proofs of the results of Section 3, and are interesting in their own right. We  take care to comment on aspects in which
they depart from the corresponding arguments in Khan and Zaslavski (2010a); the formalities of the proofs themselves are
confined to the Appendix A. Section 6 concludes the paper with a delineation of three directions and the open questions
associated with each. In the next section, by way of introducing the reader to the notation and the terminology, we  present
the basic analytics of the model. This material is by now well-understood, but for the sake of completeness, we present
results that being phrased in terms of our non-interiority condition, generalize corresponding results in Khan and Piazza
(2010).

2. The Mitra–Wan tree farm and the non-interiority condition

We begin by introducing some notation. Let N  be the set of non-negative integers and R  (R+) the set of real (non-
negative) numbers. We  shall work in the n − 1-dimensional simplex � = {x ∈ R+

∑n
i=1xi = 1}. For any x, y ∈ R

n we  denote the
inner product by xy =

∑n
i=1xiyi and the supreme norm of x by ||x||∞.

In addition to its original formulation (Mitra and Wan, 1985, 1986), an outline of the Mitra–Wan forestry model is also
available in Mitra (2005, 2006).  Here we depart from the original specification and work with the reformulation presented
in Salo and Tahvonen (2002) and pursued in Khan (2005),  Khan and Piazza (2010) and Salo and Tahvonen (2003).  Let us
consider a forest of total area 1 occupied by trees of the same species. In contrast with the case of wild forests, the state of
a forest plantation may  be described by specifying the areas occupied by trees of different ages, the underlying assumption
being that the timber content per unit of area is related only to the age of the trees.10

Under this specification, the model consists simply of the pair (b, w). The vector b is a non-negative vector of timber
coefficients (b1, . . . , bn) ∈ R

n+ where bi represents the volume of timber contained in a unit of land occupied with trees of
age i. Note that we make no assumptions on the timber coefficients other than the following Brock–Mitra–Wan uniqueness
condition.

Standing Hypothesis (BMW): There exists � ∈ {1, . . .,  n} such that (b� /� > bi/i) for all i ∈ {1, . . .,  n}/{�}.

9 After the results presented here were obtained, Tapan Mitra provided a transparent equivalent formulation of the necessary and sufficient condition
presented as the non-interiority Condition 2.1 below in terms of the “concavity at a point” property.

10 This assumption is a consequence of considering the growth of the trees as a pure aging process and that trees are sown within a constant distance
from each other throughout the area.
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The felicity function w : [0,  ∞)  → R  represents the instantaneous economic benefit as a function of the total volume of
timber harvested at each time step. A forest configuration is an element of �,  representing the fact that trees of ages ranging
from one to n cover completely a homogeneous plot of land of normalized unit size.

In addition to this, we  very much follow the original conception and assume that there are no costs of plantation, and
that n is the age after which a tree dies or losses its economic value. However, one difference should be noted. In their
treatment, Mitra–Wan take N to be the age at which the biomass per unit of land is maximized, claiming that “for any
reasonable objective function for the economy, trees will never be allowed to grow beyond age N; we  therefore take this as
a condition of feasibility itself.”11 It is this reasoning that allows the authors to limit themselves to an N-dimensional state
vector. However, given the fact that a concave felicity function favors a homogeneously configured forest, the planner may
well adopt the trade-off of postponing harvesting beyond age N in order to reshape the forest into a more homogeneous
state. We  circumvent this by assuming n to be the age at which a tree dies, and point out that the technicalities of the analysis
do not change with this augmentation of the state’s dimension.

For each period t ∈ N  we denote xi(t) ≥ 0, i = 1, . . .,  n, the surface occupied by trees of age i at time t. We  represent the state
of the forest by the vector x(t) = (x1(t), . . .,  xn(t)) ∈ �.

At every stage we must decide how much land to harvest of every age-class, c(t) = (c1(t), . . .,  cn(t)) where ci(t) ∈ [0, xi(t)].
As we know that after n a tree has no value, we assume that cn(t) = xn(t) for all t. By the end of period t + 1, the state will be
exactly

x(t + 1) =
(

n∑
i=1

ci(t), x1(t) − c1(t), . . . , xn−1(t) − cn−1(t)

)
.

Definition 2.1. A sequence {x(t)}∞t=0 is called a program if for each t ≥ 0{
x(t) ∈ �,
xi+1(t + 1) ≤ xi(t) i = 1, . . . , n − 1

(1)

Definition 2.2. Let T1 and T2 be integers such that 0 ≤ T1 < T2. A sequence {x(t)}t=T2
t=T1

is called a program if x(T2) ∈ � and
relations (1) hold for each t satisfying T1 ≤ t < T2.

Define the transition possibility set � as the collection of pairs (x, x′) ∈ � × � such that it is possible to go from the state
x in the current period (today) to the state of the forest x′ in the next period (tomorrow) fulfilling relations (1).  Formally,

� = {(x, x′) ∈ � × �/xi ≥ x′
i+1 for all i = 1, . . . , n − 1}

Definition 2.3. The vector of harvests needed to perform this transition is given by the function � : � → R
n+,

�(x, x′) = (x1 − x′
2, x2 − x′

3, . . . , xn−1 − x′
n, xn)

In addition, it is easy to see that

(x, x′) ∈ � ⇔ x, x′ ∈ � and �(x, x′) ≥ 0

The preferences of the planner are represented by a felicity function, w : [0,  ∞)  → R  which is assumed to be continuous,
strictly increasing and concave. Define for any (x, x′) ∈ � the function u(x, x′) as

u(x, x′) = w(bc)  where c = �(x, x′)

Definition 2.4. A golden-rule stock x̂ ∈ R
n+ is such that (x̂, x̂)  is a solution to the problem:{

maximize u(x, x)
subject to (x, x) ∈ �

We  now present some basic antecedent results, and except those indicated at the end of the section, they are all taken
from Khan and Piazza (2009).

Theorem 2.1. There exists a unique golden-rule stock x̂ =

⎛
⎜⎝ 1

�
, . . . ,

1
�︸  ︷︷  ︸

�

, 0, . . . , 0

⎞
⎟⎠

11 See Mitra and Wan  (1986, p. 232). The same point is made in Mitra (2005, Section 4, Paragraph 5).
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We  denote by ĉ the vector of harvests obtained by the pair (x̂, x̂), namely ĉ = �(x̂, x̂). Observe that ĉ� = 1/�  and ĉi = 0 for
all i /= �. The total amount of timber obtained by such a vector of harvest is bĉ = b� /�. Pick any z ∈ ∂+w

(
b�/�

)
,12 and set

p̂ ∈ R
n+, p̂ = zb�/�(1,  2, . . . , n) > 0.

Definition 2.5. We  define the value loss associated with any (x, x′) ∈ � to be

ı(x, x′) = w
(

b�

�

)
− w(b�(x, x′)) − p̂(x′ − x).

It is easy to see that the function ı( · , · ) is convex and the following lemma  asserts that ı(x, x′) ≥ 0 for any (x, x′) ∈ �.

Lemma  2.1. For any (x, x′) ∈ � we have

ı(x, x′) ≥ z

[
n−1∑
i=1

(
b�

�
− bi

i

)
i (xi − x′

i+1) +
(

b�

�
− bn

n

)
nxn

]
≥ 0 (2)

We use the following notion of good and bad programs introduced by Gale (1967)

Definition 2.6. A program {x(t)} is called good if there exists M ∈ R  such that for all T ≥ 0,
∑T

t=0[w(bc(t)) − w(b�/�)] ≥ M,

where c(t) = �(x(t), x(t + 1)). A program is bad if limT→∞
∑T

t=0[w(bc(t)) − w(b�/�)] = −∞.

The following general result of Gale applies to the MW model.

Proposition 2.1. Programs are partitioned into good and bad programs. Furthermore,

i. {x(t)} is good iff
∑∞

t=0ı(x(t), x(t + 1)) < ∞.
ii. {x(t)} is bad iff

∑∞
t=0ı(x(t), x(t + 1)) = ∞.

Let x0 ∈ �.  Set �(x0) = inf{
∑∞

t=0ı(x(t), x(t + 1)) : {x(t)} is a program from x0}.
It is possible to see that there exists at least one good program from every x0 ∈ �,  which in turn implies that �(x0) < ∞.

The following result can now be established.

Proposition 2.2. From any x0 ∈ � there exist a good program {x(t)} such that

∞∑
t=0

ı(x(t), x(t + 1)) = �(x0). (3)

The fact that every good program converges to the golden rule stock in the case that w is strictly concave was established
in Mitra and Wan  (1986, Lemma  6.4). Khan and Piazza (2009) provide a necessary and sufficient condition to assure the
convergence of every good program to the golden rule stock for any concave utility function w that is not necessarily
differentiable. We  describe this characterization in the following terms.

Let the discrepancy function f be

f (�) = w
(

b�

�

)
− w(b��) + z(b�� − b�

�
). (4)

We can appeal to standard results in Rockafellar (1970) to assert that the concavity of w implies f(1/�) = 0, f(�) ≥ 0 for all �
and f attains its minimum in a closed interval Sf containing (1/�).

We now turn to the condition that serves as a basic standing hypothesis for our principal results.

Condition 2.1 (Non-interiority). (1/�) /∈ int Sf.

Either w coincides with the support function, w(b�/�)  + z(· − b�/�)  only at the point b� /� or this point is one of the
extremes of the interval where the two functions coincide. Of course, the non-interiority Condition 2.1 is assured if w is
strictly concave, but there is a broader set of functions satisfying it.13 What we  achieve is the substitution of the hypothesis
of strict concavity and differentiability by concavity and the non-interiority condition. Observe that the second is a local
condition.

12 The notation ∂+w(c) stands for the upper subdifferential of the function w at the point c; see Rockafellar (1970) for detailed definitions. We  know that
∂+w(·) /= 	 due to the concavity of w and that z > 0 because w is strictly increasing.

13 Any concave piecewise linear function that has a kink at b� /� or any concave function that is strictly concave in an interval containing b� /� would be
relevant examples; (Khan and Piazza, 2009) provide further diagrammatic illustrations of such functions. Also see the text pertaining to Footnote 4 above
for  the desirability of such generalized functions.
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Next, we define the following subsets of R
n+:

Sc = {c ∈ R
n+/c� ∈ Sf and ci = 0 for all i /= �}

V = {x ∈ �/xi ∈ Sf for all i ≤ � and xi = 0 for all i > �} (5)

As discussed in Khan and Piazza (2009),  the following results are obtained without the non-interiority Condition 2.1.

Proposition 2.3. The von Neumann facet is

{(x, x′) ∈ �/ı(x, x′) = 0} = {(x, x′) ∈ �/�(x, x′) ∈ Sc}.

Remark 2.1. Given x ∈ V, consider the �-periodic program from x where the harvest consist of all the trees of the �-th age
class. This particular program has zero accumulated value loss, hence �(x) = 0 iff x ∈ V.

The following lemma, analogous to Mitra and Wan  (1986, Lemma  6.4), is arguably a basic result not only for the forestry
model, but also more generally for the theory of intertemporal allocation of resources.

Lemma  2.2. Every good program {x(t)} is such that dist(x(t), V) → 0

Next, we present the optimality criteria we shall be working with.

Definition 2.7. A program {x∗(t)} is optimal if for any program {x(t)} such that x(0) = x∗(0) we  have

lim sup
T→∞

T∑
t=0

w(bc(t)) − w(bc∗(t)) ≤ 0

Definition 2.8. A program {x∗(t)} is maximal if for any program {x(t)} such that x(0) = x∗(0) we have

lim inf
T→∞

T∑
t=0

w(bc(t)) − w(bc∗(t)) ≤ 0

If the non-interiority Condition 2.1 does not hold, we cannot assure the existence of an optimal program from any x0 ∈ �,
but only that of a maximal program. This follows from Proposition 2.2 that assures the existence of a minimizer of the
accumulated value loss function and the following result.

Proposition 2.4. If {x(t)} is a program from x0 that minimizes the accumulated value loss (
∑

tı(x(t), x(t + 1)) = �(x0)), then
{x(t)} is a maximal program from x0.

Corollary 2.1. Every maximal program is good. Hence it converges to the set V.

Lemma  2.3. The non-interiority Condition 2.1 holds iff {x̂} = V .

From now on, and throughout the rest of this work, we  will assume that the non-interiority Condition 2.1 holds. Let us
spell out two preliminary results that we have with this added hypothesis. First, we present a stronger version of Lemma
2.2,

Lemma  2.4. Any good program {x(t)} satisfies limt→∞x(t) = x̂.

Second, the existence of an optimal program is assured by the following equivalence,

Theorem 2.2. Let {x(t)} be a program from x0. If the non-interiority Condition 2.1 holds, the following conditions are equivalent:

i.
∑∞

t=0ı(x(t), x(t + 1)) = �(x(0))
ii. {x(t)} is optimal.

iii. {x(t)} is maximal.

Next, we observe that the two basic results in Khan and Piazza (2010) can be generalized under the non-interiority
Condition 2.1 to yield the following versions whose straightforward proofs we leave to the reader. These are the only new
results (so to speak) in this section.

Theorem 2.3. Let 
 > 0. If the non-interiority Condition 2.1 holds, there exists � > 0 such that for each optimal program {x(t)}
satisfying ‖x(0) − x̂‖∞ < � the following inequality holds:

‖x(t) − x̂‖∞ < 
 for all t ≥ 0

Theorem 2.4. Let 
 > 0. If the non-interiority Condition 2.1 holds, there exists a natural number T0 such that for each optimal
program {x(t)} the following inequality holds:

‖x(t) − x̂‖∞ < 
 for all t ≥ T0
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3. Principal results

We now present the principal results of this work. As emphasized in the introduction, both results are classical in that
they pertain to the following situation: if the initial and terminal configurations of a forest are given, then with enough time
at his or her disposal, the planner knows that every optimal (or approximately optimal) program ought to stay arbitrarily
near the golden-rule configuration, during an arbitrarily large fraction of the total time. However, the less of an error that
the planner is allowed in steering the forest configuration away from the golden-rule configuration, the larger the time
horizon required to observe this behavior. We  point out that while the forest remains arbitrarily close to the golden rule
configuration, the timber yields are arbitrarily close to the maximally sustainable one.

For the rest of the paper, we will assume that the non-interiority Condition 2.1 holds. We  introduce notation for the
aggregate value of finite optimal programs. Let z0, zf ∈ �,  T ≥ 1, and

U(z0, T) = sup

{
T−1∑
t=0

w(bc(t))/
T

{x(t)}
t=0

is a program from z0

}
, (6)

U(z0, zf , 0, T) = sup

{
T−1∑
t=0

w(bc(t))/
T

{x(t)}
t=0

is a program from z0 with x(T) = zf

}
. (7)

Whenever there is no program {x(t)}T
t=0 such that x(0) = z0 and x(T) = zf, we  shall assume as a matter of mathematical

conventions that U(z0, zf, 0, T) = − ∞.

Theorem A. Given M > 0 and 
 > 0 there exists L ∈ N  such that for all T > L and each program {x(t)}T
t=0 satisfying

T−1∑
t=0

w(bc(t)) ≥ U(x(0), x(T), 0, T) − M

we have

Card{i ∈ [0,  . . . , T − 1] : ‖x(t) − x̂‖ > 
} ≤ L.

Theorem B. Let 
 > 0. Then there exist L ∈ N  and M > 0 such that for all T > 2L + n + � and each program {x(t)}T
t=0 satisfying

T−1∑
t=0

w(bc(t)) ≥ U(x(0), x(T), 0, T) − M

there are �1, �2 such that �1 ∈ [0, L], �2 ∈ [T − �, T] and

‖x(t) − x̂‖ ≤ 
 for all t = �1, . . . , �2.

Moreover, if ‖x(0) − x̂‖ ≤ 
/n2 then �1 = 0.

In terms of basic conception, the results are classical in the sense that the term is delineated in Khan and Zaslavski
(2010a). Thus, rather than the Samuelsonian triple limit alluded to in his Nobel Lecture (Samuelson, 1971), an interesting
“quarter limit” is involved, and four separate considerations are quantified: the length of the time-horizon, the proximity
to the golden-rule forest configuration, the length of time that is spent within this proximity, and a “degree of slack” in
the attainment of the objective. For an index of proximity quantified by 
, and index of slack quantified by M,  Theorem A
furnishes a bound L such that for all time-horizon levels T greater than L, any M-optimal forest configuration lies within the
golden-rule configuration for (T − L) number of periods. Since L is independent of the time-horizon, the optimal configuration
lies close to the golden-rule configuration most of the time. If the planner is not allowed to choose the degree of slack M,
the result can be strengthened to guarantee that the time-periods spent in proximity to the turnpike are consecutive. This is
formalized in Theorem B, the analogue (in terms of approximately optimal programs) of the time-honored strengthening of
Radner’s result by Nikaido; see Khan and Zaslavski (2010a) for references and further discussion in terms of the RSS model.

Next, we observe that Theorem 2.4 above also follows as a straightforward consequence of Theorem B. To see this, simply
note that any optimal infinite-horizon program {x(t)}, when truncated to T periods, is an optimal T-period program with its
own initial and terminal configurations, x(0) and x(T); and that the Theorem furnishes us with L independent of both T and
these forest configurations. This alternative proof is of some methodological significance in that it shows that a result on
(uniform) asymptotic stability of the golden-rule forest configuration follows from the turnpike result classically conceived,
and thereby establishes the primacy of McKenzie’s so called middle turnpike over his late turnpike. We  point out that the
primacy of the former over McKenzie’s early turnpike is already established by the second statement of Theorem B.

Theorems A and B also allow the deduction of the following two corollaries pertaining to the “bunching” of two approx-
imately optimal programs with the same initial and terminal stocks. The first is phrased without any reference to the
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maximally sustainable forest configuration, and the second allows this “bunching” to be contiguous in an (arbitrarily large)
initial time-interval if the initial forest configuration is the golden-rule configuration.

Corollary 3.1. Given 
 > 0 and M ≥ 0, there exists L ∈ N  such that for each T > L, and any two programs {xa}T
t=0 and {xb}T

t=0
satisfying

xa(0) = xb(0) = x0, xa(T) = xb(T) = xT ,

T−1∑
t=0

w(bc(t)) ≥ U(x0, xT , 0, T) − M,

where c(t) stands alternatively for ca(t) and cb(t), following inequality holds:

Card{i ∈ [0,  . . . , T − 1] : ‖xa(t) − xb(t)‖∞ > 
} ≤ L.

Corollary 3.2. Given 
 > 0, there exists L ∈ N  and M > 0 such that for each T > 2L + n + �, and any two programs {xa}T
t=0 and {xb}T

t=0
satisfying

xa(0) = xb(0) = x̂,  xa(T) = xb(T) = xT ,

T−1∑
t=0

w(bc(t)) ≥ U(x0, xT , 0, T),

where c(t) stands alternatively for ca(t) and cb(t), there are �1, �2 such that �1 ∈ [0, �], �2 ∈ [T − L, T] and

‖xa(t) − xb(t)‖∞ ≤ 
 for all t = �1, . . . , �2.

If in addition, xa(0) = xb(0) = x̂,  then �1 = 0.

The corollaries are straightforward consequences of Theorems A and B. The proofs of the latter are developed in the
sequel in two stages: Sections 4 and 5 below present the basic footholds on which the proofs rest while Section 7 spells out
the technical details. We  conclude this section with two  observations.

First, whereas the proofs are a testimony to the fact that the standard results of classical turnpike theory do not directly
apply, its methods and basic constructions can be refashioned in Sections 4 and 5 to develop the argumentation. However, a
rather natural alternative proof-procedure suggests itself. This is to work with the Fenchel biconjugate of the felicity function,
use the non-interiority condition supplemented possibly by some additional conditions to guarantee its strictly concavity
and smoothness, apply the standard theory, and then “push it down” to the generalized context of Theorems A and B. It
remains an open question whether this alternative approach can be executed.14

The second observation concerns the explicit dependence of the time-horizon L furnished in Theorems A and B on the
error 
, and in Theorem A, on the degree of slack M.  In particular, one would like to know the impact of initial and terminal
configurations of the forest, and their proximity to the golden-rule configuration, on the time to reach the latter configuration.
We note that our method of proof does not allow such a sensitivity analysis of the time needed to reach the 
 − neighborhood
of the golden rule stock with respect to the initial and terminal condition, and such quantitative estimates remain a topic
for further study. However, see the Remark after the proof of Theorem A below.15

4. Preliminary substantive results

In this section and the next we begin developing the technical arguments needed to prove the principal results of this
work. The five propositions presented here develop intuition into the basic dynamics underlying the MW model, and even
though the proofs are notationally somewhat complex, the essential ideas are simple.16 We  shall be going into some detail
as regards the comparison with Khan and Zaslavski (2010a), but for readers not particularly interested in the comparison,
let us simply observe here that despite their superficial resemblance, Propositions 6.1–6.4 in Khan and Zaslavski (2010a) do
not furnish the precise estimates that are offered here in Propositions 4.1–4.4,  and strictly speaking there is no analogue to
them in the RSS model.

Proposition 4.1 is a basic result of the subject that given any two forest configurations, there exists a program of n time
periods that allows the planner to move from one configuration to another, n being the number of ages at which a particular
tree can be tracked.17

Proposition 4.1. For every z0, zf ∈ �,  there exists a program {x(t)}n
t=0 such that x(0) = z0 and x(n) = zf

14 We  are indebted to an anonymous referee for this paragraph. He asked whether it is “possible to get main results as limit cases of the well known
theory? It looks plausible that the non-interiority condition is exactly the condition that gives such a possibility by smoothing and “strictly concavifying”
the  original utility function.”

15 We  are indebted to the question of an anonymous referee for this paragraph, and for the answer detailed in the Remark below.
16 The reader could check her understanding of the basics of the model by trying to figure out the proofs for herself before looking at the ones presented

in  the Appendix A.
17 A version of this result was first presented in Mitra (2005).
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The following corollary presents a refinement to programs that are not of n time periods.

Corollary 4.1. Let z0, zf ∈ �.  (i) If T ≥ n, there exists a program {x(t)}T
t=0 such that x(0) = z0 and x(T) = zf. (ii) If T < n, there exists

a program {x(t)}T
t=0 such that x(0) = z0 and x(T) = zf iff z0,i ≥ zf,i+T for all i = 1, . . .,  T − n.

There is no presumption that the program whose existence is asserted in the above claims is optimal in any sense. We
turn to finite optimal programs in the next two results. Proposition 4.2 claims that the average benefit obtained from a
given initial configuration can get arbitrarily close to that obtained from the maximally sustainable timber yield, as the
time horizon becomes large enough. Proposition 4.3 makes a similar claim when the terminal forest configuration is also
specified.

Proposition 4.2. For each z ∈ �,  and each T ∈ N,

U(z, T) ≥ Tw(bĉ) − �w(bĉ).

Proposition 4.3. Given z0, zf ∈ � and T ≥ n, we have

U(z0, zf , 0, T) ≥ Tw(bĉ) − (n + �)w(bĉ). (8)

If T < n and there is a program {x(t)}T
t=0 satisfying that x(0) = z0 and x(T) = zf then inequality (8) also holds.

Next, we turn to a simple inequality that follows from the fact that the value-loss of any production plan is non-negative.

Proposition 4.4. For every T and every program {x(t)}T
t=0 the following inequality is satisfied:

T−1∑
t=0

[w(bc(t)) − w(bĉ)] ≤ n
(

b�

�

)
z (9)

Our final result asserts that any finite program that is optimal with a particular level of approximation, has its sub-
programs also optimal with respect to the same level of approximation. It is analogous to Khan and Zaslavski (2010a,
Proposition 6.6), we refer the reader to this article for the proof.

Proposition 4.5. Let T ∈ N, M > 0 and {x(t)}T
t=0 be a program such that

T−1∑
t=0

w(bc(t)) ≥ U(x(0), x(T), 0, T) − M.

Then for all S1 and S2, 0 ≤ S1 < S2 < T, we have
S2−1∑
t=S1

w(bc(t)) ≥ U(x(S1), x(S2), S1, S2) − M

5. Four substantive lemmas

With these preliminary results out of the way, we can turn to the deeper substance of the argumentation. As in Khan
and Zaslavski (2010a), it revolves around the four footholds presented below as Lemmas 5.1–5.4:  the visiting lemma, the
stability lemma, the value-loss lemma  and the aggregate value-loss lemma. However, before we take each in turn, it is worth
elaborating on what was already emphasized in the introduction: that even though these results are inspired by Lemmas 7.1
to 7.4 in Khan and Zaslavski (2010a) for the RSS model, the particularities of the MW model bring in analytical difficulties
of their own that need to be surmounted. Briefly put, in the RSS model a unit amount of labor is to be allocated to the
production of a single consumption good and to the production of n types of machines; whereas in the MW model, a unit
amount of land is to be parcelled out between the cultivation of trees of n possible ages. Thus in one, the stock variable is
an element of R

n with a well-defined order on it; whereas in the other, it is a probability measure with a finite support that
can be represented as a point in the simplex in R

n, with no clear order, and therefore little possibility of formalizing notions
either of i naction or of free disposal. 18 All this renders the proof of a result in one inapplicable to that of the other, and adds
to their considerable complication. This is especially true of the Lemmas 5.3 and 5.4 below, the Radner (1961) value-loss
and aggregate value-loss lemmas. Note also the considerable sharpening of the conclusion of Lemma 5.2 and Corollary 5.1
relative to their RSS counterparts in Khan and Zaslavski (2010a).

18 This point of view as regards the Mitra–Wan tree-farm is original to Khan and Piazza (2010).
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Lemma  5.1. Given M > 0 and 
 > 0, there exists � ∈ N  such that for each program {x(t)}�
t=0 satisfying

�−1∑
t=0

w(bc(t)) ≥ �w(bĉ) − M,

there exists t ∈ [0, �] such that ‖x(t) − x̂‖ ≤ 
.

Lemma  5.2. Let the program {x(t)}n
t=0 be such that

ı(x(t), x(t + 1)) = 0 for t = 0, . . . , n − 1. (10)

then x(t) = x̂  for all t ∈ [0,  �].

Corollary 5.1. Given 
 > 0, there exist � > 0 such that for each program {x(t)}n
t=0 satisfying ı(x(t), x(t + 1)) < � for t = 0, . . .,  n − 1,

we have ‖x(t) − x̂‖ < 
 for all t = 0, . . .,  �.

Lemma  5.3. Given 
 > 0, there exists � > 0 such that for each T ∈ N, and each program {x(t)}T
t=0 satisfying ‖x(0) − x̂‖ < 
/n,

‖x(T) − x̂‖ < 
/n and ı(x(t), x(t + 1)) < � for all t = 0, . . .,  T − 1, we have

‖x(t) − x̂‖ < 
 for all t = 0, . . . , T.

Lemma  5.4. Given 
 > 0, there exist � > 0 and M > 0 such that for each T ≥ n + �, and each program {x(t)}T
t=0 satisfying ‖x(0) − x̂‖ ≤

� , ‖x(T) − x̂‖ ≤ � and
∑T−1

t=0 w(bc(t)) ≥ U(x(0), x(T), 0, T) − M,  we have

T−1∑
t=0

ı(x(t), x(t + 1)) < 
.

For a detailed discussion and interpretation of these results, the reader is referred to Khan and Zaslavski (2010a,
Section 4).

6.  Concluding remarks

We now conclude the non-technical part of this work by delineating three directions in which the results demand
extension and further investigation.

The first of these is the rather immediate question as to how much of the theory can be salvaged when the non-interiority
Condition 2.1 does not hold? Since this condition is necessary and sufficient for asymptotic convergence of good programs,
and it is easy to provide examples of periodic optimal programs when it does not hold, perhaps the obvious answer is
simply: none of it. However, the question clearly deserves another less-facile look. The fact that infinite-horizon optimal
optimal programs converge to the von-Neumann facet is a basic result of the subject, and surely what is true of asymptotic
convergence could also possibly be true of classical turnpike theory.

This work, along with that of Khan and Zaslavski (2010a), has taken classical turnpike theory (circumscribed as it is by
assumptions of uniform strict concavity, and on occasion, differentiability, of felicity functions) and extended it to concave
functions that are not necessarily differentiable. In terms of a second direction, one is then naturally led to ask whether one
can relax the concavity (and continuity) assumption itself?

This question has not been posed so far in the capital-theory literature, but if mathematical economics is to justify itself
as an intellectually worthwhile activity, surely that justification must revolve in part on the acceptance of each new result
leading to the pursuit of questions that would not have been considered even remotely feasible before it.

These two directions stems directly from the two theorems reported here; the third is rather more overarching. A subtext
of this entire work is the (somewhat uneasy) relationship between the RSS and MW models, with the relative difficulties of
one being matched by those of another, and presenting inevitable analytical trade-offs. This tension clearly asks for a move
towards a synthesis that obtains both models as special cases, and provides a non-trivial extension to what is now associated
with the names of Gale and McKenzie and is frequently referred to as the general theory of intertemporal allocations of
resources.
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Appendix A. Technicalities of proofs

Proof of Proposition 4.1. We  propose the following program {x(t)}n
t=0,

x(0) = z0 c(0) = z0

x(1) = (1,  0, . . . , 0) c(1) = (
n−1∑
i=1

zf,i, 0, . . . , 0)

x(2) = (
n−1∑
i=1

zf,i, zf,n, 0, . . . , 0) c(2) = (
n−2∑
i=1

zf,i, 0, . . . , 0)

...
...

...
...

x(j) = (

n−j+1∑
i=1

zf,i, zf,n−j+2, . . . , zf,n−1, zf,n, 0, . . . , 0︸  ︷︷  ︸
n−j

) c(j) = (

n−j∑
i=1

zf,i, 0, . . . , 0)

...
...

...
...

x(n) = zf �

Proof of Corollary 4.1. (i) First consider any program {x(t)}T−n
t=0 from z0. The proposition above tells us that there is a program

{x̄(t)}n
t=0 where x̄(0) = x(T − n) and x̄(n) = zf . The proof follows by defining x(t + T − n) = x̄(t) for t = 1, . . .,  n. (ii) It follows

easily from the definition of program. �

Proof of Proposition 4.2. If T ≤ � then the proposition follows directly because U(z, T) ≥ 0 ≥ Tw(bĉ) − �w(bĉ).
If T > n, consider the following program {x(t)}∞t=0 from z

x(0) = z c(0) = z

x(1) = (1,  0, . . . , 0) c(1) =
(

� − 1
�

,  0, . . . , 0
)

x(2) =
(

� − 1
�

,
1
�

, 0, . . . , 0
)

c(2) =
(

� − 2
�

,  0, . . . , 0
)

...
...

...
...

x(j) =

⎛
⎜⎜⎝� − j + 1

�
,

1
�

, . . . ,
1
�︸  ︷︷  ︸

j−1

, 0, . . . , 0︸  ︷︷  ︸
n−j

⎞
⎟⎟⎠ c(j) =

(
� − j

�
, 0, . . . , 0

)

...
...

...
...

x(t) = x̂ for all t ≥ � c(t) = ĉ for all � ≤ t ≤ T

And we deduce

U(z, T) ≥
T−1∑
t=0

w(bc(t)) ≥
T−1∑
t=�

w(bc(t)) = (T − �)w(bĉ) �

Proof of Proposition 4.3. If T ≥ n, by Proposition 4.2 we know that there is a program {x(t)}T−n
t=0 from z0 such that

T−n−1∑
t=0

w(bc(t)) ≥ (T − n)w(bĉ) − �w(bĉ)
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and by Proposition 4.1,  there is a program {x(t)}T
t=T−n from x(T − n) such that x(T) = zf. Concatenating the two, we obtain the

program {x(t)}T
t=0 from z0 such that x(T) = zf and we can deduce

U(z0, zf , 0, T) ≥
T−1∑
t=0

w(bc(t)) ≥
T−n−1∑

t=0

w(bc(t)) ≥ (T − n)w(bĉ) − �w(bĉ) = Tw(bĉ) − (n + �)w(bĉ).

If T < n, then the existence of the program {x(t)}T
t=0 assures that U(z0, zf, 0, T) ≥ 0 and observing that (T − n − �)w(bc(t)) < 0

the proof follows. �

Proof of Proposition 4.4. We  know that ı(x(t), x(t + 1)) ≥ 0, hence

0 ≤
T−1∑
t=0

ı(x(t), x(t + 1)) =
T−1∑
t=0

[
w
(

b�

�

)
− w(bc(t))

]
+ p̂(x(0) − x(T))

Using the definition of � we deduce that

T−1∑
t=0

w(bc(t)) − w
(

b�

�

)
≤ ‖p̂‖ ‖x(0) − x(T)‖ ≤ ‖p̂‖ = n

b�

�
z. � (11)

Proof of Lemma  5.1. Let us assume the contrary: for each k ∈N  there exists a program {xk(t)}k
t=0 such that

‖xk(t) − x̂‖ > 
 and
k−1∑
t=0

w(bck(t)) ≥ kw
(

b�

�

)
− M (12)

Let M′ = n b�
� z > 0, by (9) we know that every program fulfills

∑T−1
t=0 w(bc(t)) − w

(
b�
�

)
≤ M′.

Given any s < k, by combining the two previous inequalities we deduce

s−1∑
t=0

[
w(bck(t)) − w

(
b�

�

)]
=

k−1∑
t=0

[
w(bck(t)) − w

(
b�

�

)]
−

k−1∑
t=s

[
w(bck(t)) − w

(
b�

�

)]
≥ −(M + M′) (13)

By extracting a subsequence and a diagonalization process we  obtain that there exist a strictly increasing sequence of natural
numbers {kj}∞j=1 and a sequence {x∗(t)}t  ∈ N such that

xkj (t) → x∗(t) when j → ∞ for all t ≥ 0

It is not difficult to see that {x∗(t)}t ∈ N is a program. From (13) we deduce that for every natural number s,
∑s−1

t=0w(bc∗(t)) −
sw(b�/�)  ≥ −M − M′, meaning that {x∗(t)}t  ∈N is a good program. Then Lemma  2.2 implies that

‖x∗(t) − x̂‖ → 0 when t → ∞.

On the other hand, it follows from (12) and the definition of x∗(t) that

‖x∗(t) − x̂‖ > 
 for all t

and the contradiction proves the lemma. �

Proof of Lemma  5.2. By Lemma  2.3,  we know that c(t) ∈ Sc for 0 ≤ t < n which implies that xi(�) = 0 for all i > �. Indeed, if
there was j > � such that xj(�) > 0, then we would have xn(n + � − j) > 0 and c(n + � − j) /∈ Sc.

From the above we know that

x(�) = (c�(� − 1),  c�(� − 2),  . . . , c�(0), 0 . . . , 0)

where c�(i) ∈ Sf. The area balance together with Condition 2.1 implies x(�) = x̂.
Finally, it is easy to see that x(t + 1) = x̂  and ı(x(t), x(t + 1)) = 0 imply x(t) = x̂ and then the proposition follows by backwards

induction. �

Proof of Corollary 5.1. Suppose, contrary to our claim, that for every k there is {xk(t)}n
t=0 such that ı(xk(t), xk(t + 1)) ≤ 1/k

and there is tk ∈ [0, . . .,  �] satisfying ‖xk(tk) − x̂‖ ≥ 
. As {tk} ⊆ [0, . . .,  �] there must be at least one value t0 ∈ [0, . . .,  �] such
that tk = t0 infinitely many times. We  extract a subsequence {kj} such that tkj

= t0 and hence ‖xkj (t0) − x̂‖ ≥ 
. By extracting a
subsequence from {kj} (to simplify the notation, we  denote this subsequence also by {kj}), we  obtain that there is a sequence
{x∗(t)} such that

xkj (t) → x∗(t) for all t = 0, . . . , n.
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It is easy to see that {x∗(t)} is a program and by the continuity of ı( · , · ) we have that ı(x∗(t), x∗(t + 1)) = 0 for all t = 0, . . .,  n
and the lemma  above implies that x∗(t) = x̂ for all t = 0, . . .,  �.

On the other hand, ‖xkj (t0) − x̂‖ ≥ 
 for all kj hence ‖x∗(t0) − x̂‖ ≥ 
 and a contradiction arises proving the corollary. �

Proof of Lemma  5.3. We  divide the proof into two parts: T < n and T ≥ n.

Case T < n: A procedure similar to the one on the corollary above allows to affirm that given 
 there is �1 such that: ı(x,
x′) < �1 implies dist (�(x, x′), Sc) < 
1 = 
/(n2n).19

Although the computation is quite cumbersome, the argument of the proof is based in a simple idea: if the distances
‖x(0) − x̂‖ and ‖x(T) − x̂‖ are small and the harvesting policy is similar to the periodic program harvesting, then the state of
the forest cannot go far from x̂ (in less than n steps) without making a large value loss in at least one step.

To see that ‖x(t) − x̂‖ < 
 for all t = 1, . . .,  T − 1 we start bounding the value of xi(t) for all i = � + 1, . . .,  n and after that we
bound ||xi(t) − (1/�)|| for all i = 1, . . .,  �.

First consider i > �. In this case, we can express xi(t) as a linear combination of xi+t−T(T) or xn(t + n − i) and the harvests
between t and T or t + n − i (that are controlled by 
1) to deduce that

xi(t) <


2n

+ n 
1 for all i  > �. (14)

We  need to divide the study into two cases:
1. Case i − t + T ≤ n,

xi(t) = xi+T−t(T) +
T−t−1∑

j=0

ci+j(t + j) <


2n

+ (T − t)
1 <


2n

+ n 
1 < 


2. Case i − t + T > n,

xi(t) = xn(t + n − i) +
n−i−1∑

j=0

ci+j(t + j) =
n−i∑
j=0

ci+j(t + j) < n 
1 < 


To deal with the i th age class when i ≤ � we start by proving that

if ‖x(t) − x̂‖ < 
2 then |xi(t + 1) − 1
�

| < n 
1 + 2 
2 for all i = 1, . . . , �. (15)
Case 2 ≤ i ≤ �,

|xi(t + 1) − 1
�

| = |xi−1(t) − ci−1(t) − 1
�

| ≤ |ci−1(t)| + |xi−1(t) − 1
�

| < 
1 + 
2

Case i = 1,

x1(t + 1) =
n∑

i=1

ci(t) ⇒ c�(t) ≤ x1(t + 1) ≤ (n − 1) 
1 + c�(t)

⇒ |x1(t + 1) − 1
�

| ≤ (n − 1) 
1 + |x�(t) − x�+1(t + 1) − 1
�

|
≤ (n − 1) 
1 + |x�(t) − 1

�
| + |x�+1(t + 1)|  < (n − 1) 
1 + 2 
2

Repeated application of (14) and (15) yields,

‖x(0) − x̂‖ <


2n

⇒ ‖x(1) − x̂‖ < 2


2n

+ n 
1

⇒ ‖x(2) − x̂‖ < 2(2


2n

+ n 
1) + n 
1

...

⇒ ‖x(T − 1) − x̂‖ < 2T−1 

2n

+ (2T−1 − 1)n  
1

and thus ‖x(t) − x̂‖ < 
 for all t = 1, . . .,  T − 1.

19 Sc = {c ∈ R
n
+ : c� ∈ Sf and ci = 0 for all i /= �}
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Case T ≥ n: Corollary 5.1 states that there is �2 such that for every program {x(t)}n
t=0 satisfying ı(x(t), x(t + 1)) < �2 for all t < n,

we have ‖x(t) − x̂‖ < 
/2n for all t = 0, . . .,  �. Apply this result to the programs {x(t + i)}n
t=0 with i = 0, . . .,  T − � to conclude

that ‖x(t) − x̂‖ < 
/2n < 
 for t = 0, . . .,  T − n + �. Afterwards, apply part 1, to conclude that during the last n − � steps the
state also fulfills: ‖x(t) − x̂‖ < 
 for t = T − n + �, . . .,  n.

Take � = min  {�1, �2} and the lemma  follows. �

Proof of Lemma  5.4. First observe that the hypothesis
∑T−1

t=0 w(bc(t)) ≥ U(x(0), x(T), 0, T) − M implies

M ≥
T−1∑
t=0

w(bc′(t)) − w(bc(t))

for any program {x′(t)} such that x′(0) = x(0) and x′(T) = x(T). We  can then find a bound of the accumulated value loss of {x(t)}
related to the accumulated value loss of {x′(t)},

T−1∑
t=0

ı(x(t), x(t + 1)) =
T−1∑
t=0

[
w
(

b�

�

)
− w(bc(t))

]
− p̂(x(T) − x(0))

≤ M +
T−1∑
t=0

[
w
(

b�

�

)
− w(bc′(t))

]
− p̂(x′(T) − x′(0))

= M +
T−1∑
t=0

ı(x′(t), x′(t + 1))

Now, taking M ≤ 
/2 it suffices to prove that there is a program {x′(t)} as above, yielding an accumulated value loss smaller
than 
/2. We  build such a program to prove its existence. Given T ≥ n + �, we look for a program such that:⎧⎪⎨

⎪⎩
ı(x′(t), x′(t + 1)) <



2(n  + �)

t = 0, . . . , � − 1

x′(t) = x̂ t = �, . . . , T − n

ı(x′(t), x′(t + 1)) <



2(n  + �)
t = T − n, . . . , T

Of course, we have ı(x′(t), x′(t + 1)) = 0 for all t = �, . . .,  T − n − 1.
Let �1 be such that ı(x′(t), x′(t + 1)) < 


2(n+�) if ‖(x′(t), x′(t + 1)) − (x̂, x̂)‖ ≤ �1. Take � = min
{

�1
n , 1

n�

}
.

We start by dealing with the first � elements of the program. We  refer the reader to the proof of Khan and Piazza (2010,
Proposition 5.5) where it is seen that for any x(0) satisfying ‖x(0) − x̂‖ ≤ � there is a program {x′(t)}�

t=0 from x(0) such that{
‖x′(t) − x̂‖ < �1, t = 1, . . . , � − 1
x′(�) = x̂

(16)

implying that ı(x′(t), x′(t + 1)) ≤ 

2(n+�) for all t < �.

To finish the proof, we need to find the last n + 1 elements of the program {x′(t)} satisfying the following conditions{
x′(T − n) = x̂
‖x′(t) − x̂‖ < �1, t = T − n + 1, . . . , T − 1
x′(T) = x(T)

(17)

We refer the reader to the proof of Khan and Piazza (2010, Lemma  6.2) where the program {x′(t)}T
t=T−n is built. �

We now turn to the proof of Theorem A. The idea of the proof is to use Lemma  5.3 to bound the difference ‖x(t) − x̂‖.
In general, it will not be possible to apply this lemma to the whole interval [0, T]. To overcome this difficulty we divide
[0, T] in conveniently chosen subintervals of bounded lengths, so that the lemma  will be valid in all but a finite number of
subintervals, where this finite number depends only on M and 
.

Proof of Theorem A. Given 
, by Lemma  5.3 there is � such that for each {x(t)}T
t=0 satisfying

‖x(0) − x̂‖ < 
/2n, ‖x(T) − x̂‖ < 
/2n and ı(x(t), x(t + 1)) < � for all t ∈ [0,  . . . , T − 1] (18)

we have

‖x(t) − x̂‖ < 
 for all t ∈ [0,  . . . , T] (19)
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Given a program {x(t)} satisfying the hypothesis and taking S, � such that 0 ≤ S ≤ S + � ≤ T we  can use Proposition 4.5 to obtain

S+�−1∑
t=S

w(bc(t)) ≥ U(x(S), x(S + �), S, S + �) − M (20)

and Proposition 4.3 to deduce

U(x(S), x(S + �), S, S + �) − M ≥ �w(bĉ) − (n + �)w(bĉ) − M (21)

From the above and Lemma  5.1 it follows that there is �̄ such that

for any S ∈ [0,  T − �̄] there is t ∈ [S, S + �̄] such that ‖x(t) − x̂‖ < 
/2n (22)

We next divide the interval [0, T] in subintervals [ti, ti+1] with i = 0, . . .,  K where t0 = 0, tK = T and

�̄ ≤ (ti − ti−1) ≤ 2�̄ and ‖x(ti) − x̂‖ < 
/2n for all i = 1, . . . , K − 1,

using the following algorithm: by (22) there is t1 ∈ [�̄, 2�̄] such that ‖x(t1) − x̂‖ < 
/2n. Using (22) again we know that there
exists t2 ∈ [t1 + �̄, . . . , t1 + 2�̄] such that ‖x(t2) − x̂‖ < 
/2n. We  proceed inductively defining

ti+1 ∈ [ti + �̄, ti + 2�̄] with ‖x(ti+1) − x̂‖ < 
/2n

We  repeat this step until we obtain (tK−1 + 2�̄) ≥ T , then we  set tK = T and the construction of the sequence is finished.
For every i = 1, . . .,  K − 2, we can apply Lemma 5.3 whenever

ti+1−1∑
t=ti

ı(x(t), x(t + 1)) < � (23)

to affirm that ‖x(t) − x̂‖ < 
 for all t ∈ [ti, ti+1 − 1]. We  claim that there are k ≤ 2 + �−1[(n + �)w(bĉ) + n b�
� z + M]  subintervals

not fulfilling (23). Indeed, denote by K ⊆ [1,  . . . , K − 2] the set of indexes such that
∑ti+1−1

t=ti
ı(x(t), x(t + 1)) ≥ � , it is easily

seen that

T−1∑
t=0

ı(x(t), x(t + 1)) =
K−1∑
k=0

ti+1−1∑
t=ti

ı(x(t), x(t + 1))

≥
∑
k ∈ K

ti+1−1∑
t=ti

ı(x(t), x(t + 1)) ≥ � Card {K}.

On the other hand we know that

T−1∑
t=0

ı(x(t), x(t + 1)) =
T−1∑
t=0

[w(bĉ) − w(bc(t))] + p̂(x(0) − x(T))

≤ Tw(bĉ) − U(x(0), x(T), 0, T) + p̂(x(0) − x(T)) + M

≤ (n + �)w(bĉ) + n
b�

�
z + M

Combining the last two inequalities we get Card {K} ≤ �−1[(n + �)w(bĉ) + n b�
� z] and it follows that

Card {t = [0,  . . . , T] such that ‖x(t) − x̂‖ > 
} ≤ 2�̄
{

2 + �−1[(n + �)w(bĉ) + n
b�

�
z + M]

}
.

Set L = 2�̄ {2 + �−1[(n + �)w(bĉ) + n b�
� z + M]}  and the theorem follows. �

Remark. A careful examination of the proof of Theorem A above allows us to see that the initial and terminal configurations
play a rather unimportant role on the bound found for this time of convergence:

L = 2�̄ {2 + �−1[(n + �)w(bĉ) + n(b�/�)z + M]}.
However, if we could assure a priori that both the initial and terminal configuration are within 
 distance from the golden
rule stock, our new bound would be smaller as the term “2” would be eliminated and L would reduce to

L̃ = 2�̄ {�−1[(n + �)w(bĉ) + n(b�/�)z + M]}. �
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Theorem B aims for a stronger condition than Theorem A: not only ‖x(t) − x̂‖ < 
 must hold for most of the time stages,
but these time stages must be consecutive, i.e., violations to the condition ‖x(t) − x̂‖ < 
 (if any) can only occur during the
initial time stages or the last ones. We  use again Lemma  5.3 to bound the difference ‖x(t) − x̂‖, but to apply it to an interval
almost as large as [0, T] we have to pay the price that we cannot choose the parameter M but that its value will be determined
in keeping with the needs of the proof.

Proof of Theorem B. By Lemma  5.3 we know that given 
 > 0 there is 
1 > 0 such that for any program {x(t)}�2
t=�1

satisfying

‖x(�1) − x̂‖ ≤ 
/2n, ‖x(�2) − x̂‖ ≤ 
/2n, and ı(x(t), x(t + 1)) ≤ 
1 for all t = �1, . . . , �2 − 1 (24)

the following inequality holds

‖x(t) − x̂‖ ≤ 
 for all t = �1, . . . , �2 (25)

In order to bound ı(x(t), x(t + 1)) we use Lemma  5.4 which states that given 
1 > 0 there are � > 0 and M > 0 such that for
every �1 and �2 (satisfying �2 − �1 ≥ n + �) and every program fulfilling

‖x(�1) − x̂‖ ≤ �, ‖x(�2) − x̂‖ ≤ �, and
�2−1∑
t=�1

w(bc(t)) ≥ U(x(�1), x(�2), �1, �2) − M (26)

we have that
∑�2−1

t=�1
ı(x(t), x(t + 1)) ≤ 
1, implying directly that ı(x(t), x(t + 1)) ≤ 
1 for all t = �1, . . .,  �2 − 1.

We proceed now to prove the existence of

�1 ∈ [0,  �] and �2 ∈ [T − �, T] such that ‖x(�i) − x̂‖ < �. (27)

Let M1 = M + (n + �)w(bĉ), Lemma  5.1 states that there is � such that if the program {x(t)}�
t=0 satisfies

�−1∑
t=0

w(bc(t)) ≥ �w(bĉ) − M1 then there is t ∈ [0,  �] such that ‖x(t) − x̂‖ < � (28)

By propositions 4.3 and 4.5 we know that

�−1∑
t=0

w(bc(t)) ≥ U(x(0), x(�), 0, �) − M ≥ �w(bĉ) − (n + �)w(bĉ) − M

T−1∑
t=T−�

w(bc(t)) ≥ U(x(t − �), x(T), T − �, T) − M ≥ �w(bĉ) − (n + �)w(bĉ) − M

and the existence of �1 ∈ [0, �] and �2 ∈ [T − �, T] such that ‖x(�i) − x̂‖ < � is assured.
Now Proposition 4.5 tells us that for any program fulfilling the hypothesis, and for any 0 ≤ �1 < �2 ≤ T,

∑�2−1
�1

w(bc(t)) ≥
U(x(�1), x(�2), �1, �2) − M.  This fact together with (27) proves that (26) holds if T ≥ 2� + n + � and then ı(x(t), x(t + 1)) ≤ 
1 for
all t = �1, . . .,  �2 − 1. Finally, this proves that (24) holds and we conclude as desired. �
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